$$ e^{i\theta}=\cos\theta+i\sin\theta $$
$$ \sin^2\theta+\cos^2\theta=1 $$
$$ \sin(2\theta)=2\sin\theta\cos\theta $$
$$ \cos(2\theta)=\cos^2\theta-\sin^2\theta $$
$$ \cos x=\frac{e^{ix}+e^{-ix}}{2}\qquad\qquad \sin x=\frac{e^{ix}-e^{-ix}}{2i} $$
$$ \cosh x=\frac{e^{x}+e^{-x}}{2}\qquad\qquad \sinh x=\frac{e^{x}-e^{-x}}{2} $$
$$ \sin^2(\theta/2)=\frac{1-\cos\theta}{2} $$
$$ \cos^2(\theta/2)=\frac{1+\cos\theta}{2} $$
$$ \sin (3 \theta)=-4 \sin ^3\theta+3 \sin \theta $$
$$ \cos (3 \theta)=4 \cos ^3\theta-3 \cos \theta $$
$$ \sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm \cos\alpha\sin\beta $$
$$ \cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta $$
$$ \cos \alpha \cos \beta=\frac{\cos (\alpha-\beta)+\cos (\alpha+\beta)}{2} $$
$$ \sin \alpha \sin \beta=\frac{\cos (\alpha-\beta)-\cos (\alpha+\beta)}{2} $$
$$ \sin \alpha \cos \beta=\frac{\sin (\alpha+\beta)+\sin (\alpha-\beta)}{2} $$